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ABSTRACT

Automatic identification of speakers’ native language (L1) based on
their speech in a second language (L2) is a challenging research
problem that can aid several spoken language technologies such as
automatic speech recognition (ASR), speaker recognition, and voice
biometrics in interactive voice applications. End-to-end learning, in
which the features and the classification model are learned jointly in
a single system, is an emerging field in the areas of speech recog-
nition, speaker verification and spoken language understanding. In
this paper, we present our study on attention-based end-to-end mod-
eling for native language identification on a database of 11 different
L1s. Using this methodology, we can determine the native language
of the speaker directly from the raw acoustic features. Experimen-
tal results from our study show that our best end-to-end model can
achieve promising results by capturing speech commonalities across
L1s using an attention mechanism. In addition, fusion of proposed
systems with the baseline system leads to significant performance
improvements.

Index Terms— end-to-end learning, native language identifica-
tion, attention mechanism, deep learning

1. INTRODUCTION

Native Language Identification (NLI) refers to the automatic process
through which we determine the native language (L1) of an indi-
vidual from their spoken or written samples in a second language
(L2). Acoustic signals contain information about the speaker’s iden-
tity such as age, gender, language background of the speaker, accent
and emotional state. Identification of such cues from speech is valu-
able for improving the robustness of existing spoken language sys-
tems. The task of native language identification is similar to the more
commonly studied tasks of language identification, accent classifica-
tion, and dialect identification. Determining the L1 background of
the speaker is a more challenging problem since we use the speaker’s
response in a second language. Speakers from a particular L1 group
tend to show common characteristics in their speech, such as a dis-
tinct foreign accent, typical pronunciation errors, and patterns of in-
tonation and duration. These commonalities in L2 production from
speakers within L1 groups are typically due to L1 transfer effects
from a lack of complete acquisition of the L2 and can form the basis
for the task of speech-based NLI.

Determining a speaker’s L1 can help improve the interaction be-
tween users and machines for many interactive voice applications
aimed at computer assisted language learning (CALL). For example,
information regarding a speaker’s L1 can enable the system to pro-
vide feedback specific to the learner in a grammar or pronunciation
error correction system or can help design a more personalized con-
versation with a dialog system targeted at improving L2 proficiency.

Furthermore, automatic speech recognition (ASR) systems tend to
show degradation in performance on accented/non-native speech.
There has been some research on improving ASR performance by
using dialect information to train dialect-specific ASR models [1] or
incorporating dialect information into the model [2]. Similarly, ASR
performance on L2 speech can be improved by training L1-specific
acoustic models [3].

Features commonly used for text-based NLI from L2 learners’
written samples generally include character-level n-grams, word and
part-of-speech (POS) tags, syntactic dependencies, and spelling and
grammatical errors. Statistical classifiers are then trained using this
set of features on data labelled with corresponding L1 information.
For speech-based NLI, acoustic features from the learners speech
such as MFCC, phone-level confusion, and lexical features like lan-
guage usage error are commonly used. Automatic NLI systems
developed for the NLI shared task held at the BEA workshop at
NAACL 2013 for determining L1 from written essays could achieve
a performance of 84% while models developed for the Computa-
tional Paralinguistics Challenge (ComParE) [4] at INTERSPEECH
2016 were able to achieve around 81% accuracy [5] in determin-
ing L1 from spoken responses from 11 L1 backgrounds. Our pre-
vious efforts aimed at improving sub-phone TDNN based i-vector
approach for NLI [6, 7] on the ComParE challenge corpus could fur-
ther improve the performance to 88% accuracy compared to 81%
accuracy of the best system from 2016 ComParE challenge.

Most of the successful approaches to NLI have relied on the use
of probabilistic models such as a Gaussian mixture model universal
background model (GMM-UBM) or i-vector framework as the front-
end to factorize speech signals into speaker-related factors. This is
followed by a back-end scoring model e.g., the cosine-similarity
metric, linear discriminant analysis (LDA) and probabilistic linear
discriminant analysis (PLDA). In the ComParE challenge, systems
using i-vector based models all achieved approximately 70% or
higher accuracy for identification of the 11 L1 languages [8, 9, 5].
The performance of spectrum-based approaches for the ComParE
corpus was in the range 45%-58% accuracy [10, 11, 12], and was
thus much inferior to the i-vector approaches. While i-vector ap-
proaches contain the learning of speaker features and back-end
scoring as separate components, end-to-end frameworks allow us
to perform both together in a single system. In this paper, we pro-
pose attention-based models for spectrum-based end-to-end NLI.
We evaluate the effectiveness of our proposed approach on a corpus
of 11 L1 languages. Our study shows that our proposed models
can achieve reasonable good performance when compared to the
i-vector system. Our findings show that the end-to-end networks
learn complementary representations to i-vector systems and we get
significant improvements by combining their scores.
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2. RELATED WORK

End-to-end learning has become very popular for speech recognition
in recent years. Traditional ASR systems that consist of an acoustic
model, a pronunciation model and a language model require inde-
pendent training for the three modules. End-to-end architectures
allow all three modules to be learned jointly in a single module
[2, 13, 14, 15, 16, 17, 18]. State-of-the-art speech recognition mod-
els that employ an attention network can show significant improve-
ment [14, 16, 17, 19] in word error rates. Furthermore, end-to-end
sequence-to-sequence networks have been applied successfully to
text-to-speech synthesis [20, 21, 22] to convert character sequences
to mel spectrogram which is then converted to speech. Recently,
several studies [23, 24, 25] have attempted to replace the ASR and
natural language understanding components for spoken language un-
derstanding in spoken dialog systems with a single end-to-end model
that extracts the domain/intent directly from the users speech. End-
to-end models have also been explored for speaker verification task
[26, 27] and are seen to outperform conventional i-vector/PLDA sys-
tems.

Most of the work on NLI has focused on i-vector based systems.
The best performing model for the Native Language ComParE 2016
challenge and improved systems built thereafter have focused on i-
vector frameworks. Very few research studies have targeted the use
of spectral features such as MFCC or filter bank features. While
spectrum-based deep learning approaches outperformed the base-
line system in the ComParE challenge, their performance was much
worse than the i-vector based systems. Our research study attempts
to improve the performance of spectrum based end-to-end models by
taking inspiration from state-of-the-art speech recognition models.

3. END-TO-END NATIVE LANGUAGE IDENTIFICATION

We take inspiration from sophisticated end-to-end ASR models and
extend it to the task of learning the native language ID. End-to-end
NLI is similar to an audio classification task that takes a sequence
of acoustic features and maps the feature vector into one of the L1
classes c ∈ (c1, c2, ..., cn). Our network uses log-Mel filter bank
features, x = (x1, x2, ..., xt) as input and outputs a vector of poste-
rior probabilities for each L1 class. The class with the highest pre-
diction probability is selected as the recognized L1 of the speaker.

3.1. Listen, Attend and Identify

Recurrent Neural Networks (RNNs) which process sequences of in-
puts and model dependencies over time have been widely used in
speech systems. Speech signals can contain thousands of frames and
sequential processing of over thousands of time steps can be com-
putationally expensive. To solve this issue, our end-to-end model
is inspired from the state-of-the-art end-to-end ASR model, Listen,
Attend and Spell (LAS) [14].

Similar to the LAS model, our model consists of two compo-
nents: the listener and identifier. The listener is a three-layer Bidi-
rectional Gated Recurrent Unit (Bi-GRU) encoder network that takes
log-Mel filter bank features as input and transforms the input feature
vector into a high-order feature representation. Layers of Bi-GRUs
are stacked in a pyramidal structure. In every pyramidal Bi-GRU
layer (pBGRU), the number of time steps t for the input signal x is
reduced by one half. The listener encoder maps the input x to a high-
level representation henc = (h1, h2, ..., hT ) where T is the length
of henc reduced from the input length t.

In each Bi-GRU layer the outputs of the forward and backward
layers are concatenated together. The number of timesteps at the
listener output are reduced to t/8 steps. The three-layer pBGRU
architecture allows us to subsample from a large number of frames
and reduce the dimensionality of the feature vector. The identifier
is an attention-based classifier that applies attention to the output of
the listener. The attention layer is followed by a fully connected
feed-forward layer that generates posterior probabilities for each L1
class. Reducing the dimensionality of the feature vector enables us
to apply attention to a shorter feature sequence making it easier to
discriminate between the classes. We refer to this system as the Lis-
ten, Attend and Identify (LAI) system.

Fig. 1. Listen, Attend and Identify (LAI) architecture

3.2. CGDNN

We experimented with a second approach to subsampling long fea-
ture sequences by using a combination of Convolutional Neural Net-
works (CNN) and Gated Recurrent Units (GRU). The input signal
(x1, x2, ..., xt) is represented with the dimensions 1× t× k, where
t is the number of time steps and k is the length of the features at
each time step. In our work, k is 40 since we use 40-dimensional log
filter bank features. We have used four two-dimensional CNN layers
to reduce the frequency variance in the input signal. Each CNN layer
is followed by a max pooling layer where pooling is performed along
the frequency axis. The output of the CNN network is a high-order
feature representation of feature maps× time× frequency. To
reduce the dimensionality of the feature vector further, we add a lin-
ear layer after the last CNN layer. The output of the linear layer is
next passed to a network of uni-directional GRU layers that mod-
els the signal along the time domain. After performing temporal
modeling, we apply attention to each time step in the output of the
GRU network. Next, we pass the output of the attention layer to two
fully connected DNN layers. We refer to this system as the CGDNN
system, since it contains a combination of CNN, GRU, and fully
connected DNN layers.
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Fig. 2. CGDNN architecture

3.3. Attention mechanism

Recently, attention mechanisms are becoming quite popular and per-
forming very well on many tasks such as speech recognition [14, 19],
speaker verification [26, 27], machine translation [28], image cap-
tioning [29]. Our end-to-end architectures, LAI and CGDNN consist
of three major components: an encoder network which maps input
acoustic features to a high-level representation, an attention model
that determines which parts in the feature representation to pay at-
tention to and a fully connected classifier network that determines
the probability of predicting all the classes given the feature vector
from the attention model. Let henc = (h1, h2, ..., hT ) be the high-
level feature representation at the output of the acoustic encoder i.e.
the output from the last GRU layer of both models defined in Sec-
tions 3.1 and 3.2, where T is the length of henc. The attention vector
v is a representation of the important parts of the feature vector henc.
We learn the score ei for the encoder output hi at each time step i

using the equation:

ei = tanh(hi), i = 1, ..., T (1)

The mechanism calculates a weight αi for the encoder output
for each time step i, which can be inferred as the probability of the
importance of time step i. We use the softmax function to compute
the normalized weight αi ∈ [0, 1] :

αi =
exp(ei)∑T

k=1 exp(ek)
(2)

where
∑T

i=1 αi = 1. The attention vector v is computed as the
weighted average of the encoder outputs at all time steps:

v =

T∑
i=1

αihi (3)

In addition to the basic attention mechanism mentioned above,
we have also tried two variants of the attention layer [30]: cross-
layer attention and divided-layer attention. For cross-layer atten-
tion, the attention vector is computed as shown in equation 3 as the
weighted average of the final layer outputs of the encoder but with
weights computed using the second-to-last layer. For LAI, we use
the second-to-last pBGRU layer and for CGDNN, the second-to-last
GRU layer is used to compute the scores ei and attention weights
αi. For the second variant, we double the dimension of the last layer
outputs and divide it equally into two parts. One part is used to com-
pute the attention weights αi and the other is used to compute the
attention vector v.

4. EXPERIMENTS

4.1. Corpora

Our experiments on end-to-end modeling and i-vector baseline for
L1 recognition are evaluated on a corpus of non-native English
speech collected during a high-stakes global assessment of English
language proficiency. Our corpus is similar to the corpus provided
by Educational Testing Service (ETS) as the Native Language sub-
challenge corpus for ComParE Challenge at Interspeech 2016 [4].
The corpus consists of spoken responses from 11,000 non-native
speakers with 11 different L1 backgrounds: Arabic (ARA), Chinese
(CHI), French (FRE), German (GER), Hindi (HIN), Italian (ITA),
Japanese (JAP), Korean (KOR), Spanish (SPA), Telugu (TEL) and
Turkish (TUR). Each response is approximately 45-60 seconds long.
The corpus contains approximately 138 hours of speech sampled at
16 kHz. There are approximately 1,000 speech recordings for
each L1 in the dataset. The data is partitioned as follows with no
overlapping speakers: we have used 7,040 recordings for training
our models, 1,760 recordings are used as validation set and 2,200
recordings are used for testing the performance of our models. The
test set contains 200 responses for each L1.

4.2. Experimental setup

The input features for all end-to-end models are 40-dimensional log-
Mel filter bank features computed every 10 ms. The data is nor-
malized to zero mean and unit standard deviation using mean and
standard deviation from the training set. All end-to-end models are
trained using Keras with a Tensorflow backend on three CUDA-
enabled GPUs. The i-vector baseline system is trained using Kaldi.
All end-to-end networks are trained using 50 epochs with a batch
size of 32 samples.
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(a) Basic attention layer

(b) Cross-layer attention layer

(c) Divided-layer attention layer

Fig. 3. Attention mechanisms: (a) basic attention (b) cross-layer
attention (c) divided-layer attention

4.2.1. Listen, Attend and Identify (LAI)

In the Listen encoder, we have used three pBGRU layers with 512
nodes i.e. 256 nodes in each direction. Adding more layers to the
network did not improve the performance. We also tried using pyra-
midal Bidirectional Long Short Term Memory (pBLSTM) layers in-
stead of pBGRU layers. However, the accuracy achieved using pB-
GRU was slightly better than pBLSTM. Also since GRUs do not
use memory unit like LSTMs and have less complex structure they
are computationally more efficient; we saw a significant decrease
in training time by using BGRUs over BLSTMs. The outputs of
the forward and backward RNNs are concatenated together. For all
pBGRU layers, the weights are initialized using the Glorot-Bengio
initializer [4] and Hyperbolic Tangent (tanh) activation. To avoid
overfitting, each pBGRU layer is followed by a dropout layer with a
dropout rate of 30%. The Identifier consists of an attention layer and
an output layer which is a fully connected feed-forward layer with
softmax activation with a hidden size of 11 corresponding to the 11

L1 classes. The model is trained using categorical cross-entropy cri-
terion and optimized using Adam optimizer [31] with a learning rate
of 0.0005.

4.2.2. CGDNN

In the multi-layer CNN network, the first layer is a 2D convolution
layer with 16 output filters in the convolution, kernel size of 7 × 7.
This is followed by max pooling layer of pooling size 6×6. The sec-
ond 2D CNN layer has kernel size of 5×5 and 32 output filters. The
remaining two CNN layers have kernel size of 3 × 3 and 32 output
filters. All CNN layers use Rectified linear unit (ReLU) activation.
The last three CNN layers are each followed a max pooling layer of
pooling size 3× 1. We have added Batch Normalization [32] layers
between every connection in the multi-layer CNN network. Adding
batch normalization layers helped speed up the convergence of this
architecture.

Between the CNN and RNN networks, we have connected a lin-
ear layer with 128 outputs. The RNN network consists of 2 GRU
layers each with 256 nodes. The last RNN layer is followed by
an attention layer connected to a feed-forward layer with 32 nodes
followed by a fully connected softmax layer with 11 output nodes.
Adding more layers did not improve the performance of the architec-
ture. For all CNN and RNN layers the weights are initialized using
the Glorot-Bengio initializer.

The model is trained using categorical cross-entropy cost func-
tion and optimized using Stochastic Gradient Descent (SGD) opti-
mizer with drop-based learning rate decay and momentum of 0.8.
We have implemented the decay function such that the learning rate
(lr) is dropped by one half every 10 epochs. We used an initial
learning rate of 0.1 which is dropped by one half every 10 epochs.

lr = intial lr ∗ dropfloor(epoch/epoch drop) (4)

4.2.3. CNN and RNN models

For our preliminary experiments, we developed a simple 4 layer
CNN network similar to the 4 layer CNN network from the CGDNN
model. We report the results of applying attention mechanism to the
4 layer CNN network in Section 5. To analyze the effect of adding
GRUs to the CNNs in CGDNN architecture, we also report the re-
sults of using only a 2 layer GRU network. Both the models are
trained using SGD optimizer with drop-based learning rate decay.

4.3. Baseline system

A GMM-based i-vector system is used as the baseline NLI system in
this study. Based upon factor analysis, an i-vector is a compact repre-
sentation of a speech utterance in a low-dimensional subspace. The
i-vector based approach has been successful in recognizing speaker
and language identity and is well-suited to NLI. In the baseline NLI
system, an energy-based voice activity detection (VAD) method is
applied to detect non-speech segments within utterances. 20 dimen-
sional MFCCs including c0, extracted from the resultant speech seg-
ments via a 20ms Hamming window with a 10ms time shift. MFCCs
are appended with their first and second derivatives. Utterance-based
cepstral mean normalization was performed on the acoustic feature
vectors. A GMM with 2,048 Gaussian Kernels and a full covari-
ance matrix was trained as the Universal Background Model (UBM)
by using the training set of the corpus mentioned in Section 4.1.
The same training set was also used to train an i-vector extractor
T-matrix, i.e., a low rank rectangular matrix called total variabil-
ity, as well as Probabilistic Linear Discriminant Analysis (PLDA)
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Table 1. The accuracy obtained by different NLI systems on the test
set of 11 L1 corpus

Method Accuracy (%) UAR (%)
Majority vote baseline 9.00 8.26

RNN only 42.09 42.87
CNN only 60.45 61.13
CGDNN 69.18 69.66

LAI 70.45 70.87
i-vector baseline 79.72 81.59

projection matrices. We employ PLDA as a scoring method to L1
recognition, where we calculate the log likelihood rate (LLR) for the
i-vector of each testing utterance and those of target L1s and select
one with highest LLR as recognized L1.

4.4. Fusion of end-to-end and i-vector baseline system

We think that the end-to-end models and i-vector system might be
able to compensate each other by learning different representations
from the speech data. We have implemented score-level fusion by
using the posterior probabilities generated at the output of the end-
to-end neural networks and the log likelihood ratios computed using
PLDA scoring model (normalized by z-score) as features to a Mul-
tilayer Perceptron (MLP) classifier to predict the L1 classes. The
model contains two fully connected layers each with 200 hidden
units and ReLU activation connected to a softmax layer with 11 hid-
den units. The network is optimized using SGD optimizer with an
initial learning rate of 0.001, momentum of 0.9 and Nesterovs Ac-
celerated Momentum update [33, 34]. The fusion model is trained
using the development set mentioned in Section 4.1.

5. RESULTS AND DISCUSSION

We first compare the results obtained by different end-to-end sys-
tems using basic attention mechanism with the baseline i-vector sys-
tem in Table 1. The performance of NLI systems are evaluated using
accuracy and Unweighted Average Recall (UAR), same as the met-
rics used for ComParE challenge. All end-to-end models reported in
Table 1 use basic attention mechanism as shown in Figure 3(a). All
our end-to-end models perform significantly better than the majority-
vote baseline which has an accuracy performance of 9% and 8.26%
UAR. From our experimental results, we see the advantage of us-
ing a combination of CNN, GRU and DNN layers in the CGDNN
architecture. The accuracy is improved significantly from 42.09%
(RNN only) and 60.45% (CNN only) to 69.18% with the combined
CGDNN system. This indicates that the CGDNN model is able to
produce a feature representation that is more easily separable for L1
recognition.

The Listen, Attend, Identify (LAI) system outperforms all the
end-to-end models achieving 70.45% accuracy and 70.87% UAR.
The time resolution is reduced by 23 = 8 times (for 3 pBLSTM lay-
ers) in the LAI model enabling us to focus on fewer number of time
steps. The accuracy performance of the LAI model is 1.27% better
than CGDNN model. However, from our experiments, time required
for training the LAI model was significantly higher than the time re-
quired to train CGDNN model. Using three GPUs, training time for
the LAI model was 6 times more than the training time required for
the CGDNN model. The CGDNN model also benefited from using

batch normalization layers allowing the model to converge in fewer
number of epochs. Adding batch normalization layers to the LAI
model had no effect on the convergence.

Fig. 4. Confusion matrix of the i-vector baseline system results on
the test set of 11 L1s (rows: references; column: hypotheses)

Fig. 5. Confusion matrix of the LAI system (basic attention) results
on the test set of 11 L1s (rows: references; column: hypotheses)

Confusion matrices for the results on the test set of 11 L1s us-
ing the i-vector baseline, the LAI and CGDNN systems are shown
in Figures 4, 5 and 6 respectively. The most distinguishable L1s for
the i-vector system are French (FRE), Spanish (SPA) and Turkish
(TUR) which can all achieve an F1 score over 0.83. All three sys-
tems perform the worst on Hindi (HIN) recognition with F1 score
less than 0.65. Hindi is most confused with the other Indian language
in the corpus, Telugu (TEL). Although Telugu belongs to the Dravid-
ian language family while Hindi belongs to the Indo-Aryan family,
the two languages share many similarities in segmental pronuncia-
tion and prosody, which likely lead to similarities in the L2 English
accents from speakers with these L1 backgrounds. However, both
end-to-end systems outperform the baseline in Telugu recognition.
While the i-vector baseline performs better for most L1s as com-
pared to the LAI system, the performance of our best end-to-end
system, i.e. LAI is close to the baseline performance for German
(GER) and Chinese (CHI) recognition and outperforms the i-vector
system on Telugu (TEL) recognition. Although the performance of
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Fig. 6. Confusion matrix of the LAI system (basic attention) results
on the test set of 11 L1s (rows: references; column: hypotheses)

L1s i-vector LAI (basic CGDNN (basic
Baseline attention) attention)

ARA 0.79 0.67 0.685
CHI 0.75 0.74 0.805
FRE 0.91 0.715 0.695
GER 0.81 0.81 0.88
HIN 0.645 0.5 0.41
ITA 0.825 0.66 0.635
JPN 0.785 0.715 0.665
KOR 0.825 0.785 0.705
SPA 0.845 0.64 0.63
TEL 0.755 0.775 0.77
TUR 0.83 0.74 0.73

Table 2. The F1-score of the individual L1s on 11 L1s recognition

CGDNN system is lower than i-vector and LAI system, it is inter-
esting to see that CGDNN outperforms both systems in German and
Chinese recognition and performs on par with LAI on Telugu recog-
nition outperforming the baseline.

Experimental results in Table 3 obtained using attention layer
variants indicate that cross-layer attention performs slightly better
relative to the basic attention model leading to approximately 1%
relative improvement for both end-to-end models. Using divided-
layer attention led to a degradation in end-to-end performance when
compared with basic and cross-layer attention performance.

We report the number of parameters for the models in Table 4.
We see that with relatively fewer parameters the end-to-end models
are able to achieve reasonable performance when compared to the
i-vector baseline. In particular, LAI system contains 7 times fewer
parameters while CGDNN contains 43 times fewer parameters with
respect to the i-vector system.

Each system shows superior performance in the recognition of
specific L1s as seen from the individual confusion matrices in Fig-
ures 4, 5 and 6. Hence, we have tried fusion experiments where we
use the prediction probabilities from the proposed end-to-end sys-
tems along with the LLRs from the i-vector system to train a new
model to predict the L1 classes again. Table 5 illustrates the results

obtained by fusion of baseline system with end-to-end models us-
ing basic and cross-layer attention mechanisms. All fusion systems
reported in Table 5 can outperform the i-vector baseline system in-
dicating that the end-to-end models may have learned complemen-
tary representations. The best fusion accuracy of 83.32% is obtained
by fusion of LAI, CGDNN and i-vector systems where the end-to-
end models use cross-layer attention mechanism. Fusion of the three
systems where the end-to-end models use basic attention layer is just
slightly worse in overall performance (83.18%). The basic attention
layer is stronger at performing for complementary languages such as
Chinese, German and Telugu recognition which the i-vector baseline
is weak in recognizing, while for the models with cross-layer atten-
tion we saw additional improvements for Hindi, Italian, Japanese,
Spanish and Turkish recognition in addition to the complementary
language recognition. We see that for both attention variants in Ta-
ble 5, CGDNN+baseline system performs better than LAI+baseline
since as mentioned earlier in this section, CGDNN system performs
well for a larger set of complementary languages (German, Chinese
and Telugu) as compared to LAI system (Telugu).

Table 3. End-to-end systems accuracy with different attention layer.

Model Basic Cross-layer Divided-layer
LAI 70.45 71.72 68.63
CGDNN 69.18 70.18 69.09

Table 4. Number of parameters for the models

Model Parameters
i-vector baseline ∼ 32M
LAI ∼ 4.46M
CGDNN ∼ 0.73M

Table 5. The accuracy obtained by different fusion systems on the
test set of 11 L1 corpus

Fusion system Basic Cross-layer
LAI + baseline 82.13 82.27
CGDNN + baseline 82.86 83.14
LAI + CGDNN + baseline 83.18 83.32

6. CONCLUSION

In this paper, we experimented with different end-to-end architec-
tures and attention mechanism variants for automatic L1 recognition
from raw features i.e. spectrogram of non-native speech. Our re-
sults indicate that our best attention-based neural network with much
fewer parameters in the model can achieve a performance close to the
conventional system. Additionally, in our model, feature representa-
tion learning and scoring can be done in a single system as opposed
to the i-vector system. Furthermore, a fusion of the end-to-end sys-
tem with the i-vector system can improve the baseline performance
from 79.72% to 83.32% indicating that the three systems are able
to capture complementary information from the data. We think that
our results are promising to continue research in this direction for L1
recognition and we believe that the performance could be further im-
proved with larger training data, an intrinsic property of deep learn-
ing to outperform the traditional i-vector system. Our future work
will be on improving the end-to-end L1 recognition performance by
investigating more advanced neural network architectures and atten-
tion variants and extending our system to handle L1 recognition of
more languages.
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