
A PROMPT-AWARE NEURAL NETWORK APPROACH TO CONTENT-BASED SCORING 
OF NON-NATIVE SPONTANEOUS SPEECH 

 
Yao Qian, Rutuja Ubale, Matthew Mulholland, Keelan Evanini and Xinhao Wang 

 
Educational Testing Service R&D, USA 

{yqian, rubale, mmulholland, kevanini, xwang002}@ets.org 
 

ABSTRACT 
 
We present a neural network approach to the automated 
assessment of non-native spontaneous speech in a listen and 
speak task. An attention-based Long Short-Term Memory 
(LSTM) Recurrent Neural Network (RNN) is used to learn the 
relations (scoring rubrics) between the spoken responses and 
their assigned scores. Each prompt (listening material) is 
encoded as a vector in a low-dimensional space and then 
employed as a condition of the inputs of the attention LSTM-
RNN. The experimental results show that our approach performs 
as well as the strong baseline of a Support Vector Regressor 
(SVR) using content-related features, i.e., a correlation of r = 
0.806 with holistic proficiency scores provided by humans, 
without doing any feature engineering. The prompt-encoded 
vector improves the discrimination between the high-scoring 
sample and low-scoring sample, and it is more effective in 
grading responses to unseen prompts, which have no 
corresponding responses in the training set. 
 

Index Terms— automated speech scoring, LSTM, RNN, 
attention 

 
1. INTRODUCTION 

 
Automated systems for scoring non-native speech assess spoken 
language proficiency along several dimensions of 
communicative competence including delivery (pronunciation, 
stress, fluency, and intonation), language use (vocabulary and 
grammar), content (topical relevance and appropriateness), and 
organization (discourse structure and coherence). It is an 
attractive but challenging application of spoken language 
technologies. ETS’s SpeechRaterSM [1] is one such scoring 
application, and has been used to score open-ended, spontaneous 
responses to assessments of English for academic purposes. 
Each spoken response is first processed by speech processing 
technologies, where the input speech is transcribed into a 
sequence of linguistic units (phonemes, syllables, and words) by 
automatic speech recognition (ASR), and the corresponding 
features, which can be used to assess pronunciation, stress, 
fluency, and intonation, are extracted via forced-alignment with 
the recognized hypotheses. The recognized word sequence is 
then fed into a natural language processing module to generate 
the features related to vocabulary, grammar, content and 
structure. All the features are then used to predict a score using 
a scoring model trained (in the sense of supervised learning) on 
responses scored by humans. 

In the early stages, most automated speech scoring systems 
focused on measuring predicted speech or restricted speech in 
very limited aspects, for example, Ordinate [2] and EduSpeak 
[3]. Generally, users were asked to engage in a read-aloud task 
and the systems provided feedback to the users based on the 
overall accuracy of their reading and the metrics associated with 
pronunciation, fluency and prosody. This was mainly due to the 
subpar performance of ASR systems in those days. Automated 
assessment of language proficiency of a test taker’s spoken 
response regarding its content, vocabulary, grammar and 
discourse coherence, depends largely upon how well the input 
speech can be correctly recognized. 

 Recent advances in ASR and spoken language processing 
have led to improved systems for automated assessment of 
spoken language. Some content-related features are generated to 
address content appropriateness, topicality correctness, task 
completion, and pragmatic competence in some advanced 
automated speech scoring system [4-9]. However, these features 
are mostly handcrafted and prompt-dependent, i.e., tuned for a 
specific task or domain. It is time-consuming to select such 
features to train an appropriate model with a certain number of 
responses. There are often suboptimal features that are neither 
generalizable nor available for an unseen prompt, i.e., the prompt 
has no corresponding responses in the training set. Recent 
studies have demonstrated that features automatically extracted 
by deep learning technologies are far superior to those produced 
by feature-engineering techniques in a variety of machine 
learning tasks [10]. 

In this paper, we focus on evaluating the appropriateness of 
the content-based aspects of spoken responses in the context of 
English speaking proficiency assessment. An LSTM-RNN is 
explored to directly train a scoring model with the sequence of 
input words. We also investigate an attention mechanism on the 
outputs of LSTM for a regression model. A prompt encoder is 
employed to build a generic scoring model for the responses to 
both seen prompts and unseen prompts. To the best of our 
knowledge, there has been little research investigating a generic 
content-based scoring model for non-native spontaneous speech. 

 
2. RELATED WORK 

 
Recently there have been several studies on automated content 
scoring for spontaneous spoken responses [4-9]. Latent Semantic 
Analysis (LSA) [12] models are trained specifically for each task 
to evaluate the appropriateness of spoken content in [4,5]. A test 
taker’s spoken response is graded by the similarity between the 
recognized word sequence and word sequences from the 
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responses with high human scores (regarded as good samples) in 
the training set, projected onto a reduced space by Singular 
Value Decomposition (SVD).  Content Vector Analysis (CVA) 
[13] is another approach to score spoken content [6,7]. CVA is 
similar to LSA in that it uses cosine similarity measures, but no 
SVD is employed in CVA. In addition, CVA differs from LSA 
in that CVA divides responses into groups according to human 
scores. Confidence scores of the recognized words are employed 
to make the scoring model robust to recognition error [5,6]. [8] 
proposed to score response content with respect to each concept 
separately instead of estimating the appropriateness of spoken 
content on the entire response. It is assumed that multiple parts 
with factual information are contained in each response and 
organized by the test taker in discrete segments. The words in a 
spoken response are treated as an unordered list in LSA and CVA 
based approaches, since a bag-of-words is used to calculate the 
word frequency. To capture contextual information or temporal 
dynamics, Bidirectional LSTM-RNN (BLSTM-RNN) was 
employed in [11], where there were two models (one for the 
word embeddings of the recognized words, and other for 
acoustic features, for example, word duration and pitch value) 
concatenated and fed into a linear regression layer to predict 
holistic scores. Experimental results indicate a performance 
improvement compared to the conventional models. However, 
no breakdown of results shows the performance of BLSTM-
RNN for content-based scoring.   

On the other hand, a number of systems, such as Intelligent 
Essay Assessor [14] and e-rater [15], designed for scoring 
written essays can be extended to speech scoring after the spoken 
response is transcribed into text [38,39]. Recently, neural 
network (NN) based models were compared with traditional 
feature-engineered models on automatic text scoring [17-19,35]. 
In [18], a hierarchical convolutional neural network (CNN) 
architecture was employed and competitive performance was 
shown for in-domain and domain-adaptation tasks. [19] found 
that a mean-over-time layer on top of an LSTM recurrent layer 
achieved the best performance among various neural network 
structures. A BLSTM-RNN with a weighted linear combination 
of two loss functions, score prediction and word embeddings, in 
multi-task learning was proposed in [17]. The score-specific 
word embeddings yielded by such a model are more 
discriminative between correct words and incorrect counterparts 
than the conventional word embeddings. C-rater[16,34] is a 
system built by ETS, focusing more on assessing content-based 
aspects. As a prototype system, it has demonstrated excellent 
performance in public competitions e.g., the Automated Scoring 
Assessment Prize (ASAP) in 2012 sponsored by the Hewlett 
Foundation. In general, approaches to content-based scoring 
have been prompt-specific. 

 
3. DATA AND TASK 

 
In this study, we use a corpus that contains non-native children's 
speech drawn from a pilot version of the TOEFL Junior® 
Comprehensive assessment administered in late-2011. The 
TOEFL Junior Comprehensive assessment was a computer-
based test containing four sections: Reading Comprehension, 
Listening Comprehension, Speaking, and Writing. It was 
intended for middle school students around the ages of 11-15, 

and was designed to assess a student’s English communication 
skills through a variety of tasks. This study focuses on the 
Speaking section, in particular, the Listen Speak (LS) task type. 
In this task type, the test taker listens to an audio stimulus 
(approximately 2 minutes in duration) containing information 
about a non-academic topic (for example, a class field trip) or an 
academic topic (for example, the life cycle of frogs) and provides 
a spoken response that should contain pieces of information that 
were provided in the stimulus.  

There are total of 18 prompts and 8,738 responses in this 
data set. Each speaker provided two or three responses to LS 
tasks. The responses are approximately 60 seconds in duration, 
and contain roughly 100-150 words on average. The corpus 
includes responses from 3,225 test takers from the following 
native language backgrounds: Arabic, Chinese, French, German, 
Indonesian, Japanese, Javanese, Korean, Madurese, Polish, 
Portuguese, Spanish, Thai, and Vietnamese. It is divided into 
training and test sets (with no speaker overlap) for the current 
study. The corresponding number of speakers, number of 
responses, and prompts are presented in Table 1. The test set is 
also categorized into the responses to seen prompts and unseen 
prompts. Each response is scored on a scale of 0-4 by at least 2 
expert human raters following scoring rubrics on content, 
delivery and language. A third or fourth opinion is given when 
the scores from those two experts are different. The final 
adjudicated scores are used as the reference scores to build the 
scoring model in the following sections. Responses scored with 
zero are generally non-English responses and off-topic 
responses. The reference score distribution for the responses in 
each data partition is listed in Table 2.   
 
Table 1: Number of speakers, number of responses, and prompts 
for each data partition 
 
Partitions Speakers Responses Prompts 
Train 2,511 6,635 16 
Test(Seen/Unseen) 714(635/79) 2,103(1,870/233) 18(16/2) 

 
Table 2: Human score distribution (percentage) for the 
responses in each data partition  
 

Score 0 1 2 3 4 
Train (%) 7.9 24.9 39.8 19.4 8.0 
Test (%) 8.1 20.4 38.7 24.7 8.1 

 
4. SCORING MODELS 

 
4.1. Response Visualization 
 
We visualize the spoken responses in the training set by using t-
distributed Stochastic Neighbor Embedding (t-SNE) [20], a 
technique of dimensionality reduction for the visualization of 
high-dimensional datasets. Each response is first transcribed into 
a word sequence and then represented by a 300-dimensional 
vector, i.e., the average of the word embedding vectors obtained 
via Google’s Word2Vec [21]. Figure 1 shows the visualization 
of the responses labeled with score 4 and score 1 (different 
prompts are marked by different colors). For score point 4, the 
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Fig.1: Visualization of the spoken responses using t-SNE (each 
point represents a response and its color distinguishes different 
prompts) 
 

 
 
Fig.2: The Neural network architecture (prompt-aware and 
attention-based LSTM-RNN) for scoring spoken responses 
 
responses are highly clustered according to the prompt, whereas 
for score point 1, the responses appear to be randomly 
distributed. This observation motivates us to consider 
incorporating the prompts into the scoring models. 

 
4.2. Model Architecture 
 
A regression model is generally used to build scoring model with 
input sequences, i.e., speech or an essay. RNNs [22] configured 
to process input sequences of arbitrary length and capture 
temporal dynamics have been successfully applied to solve a 
wide range of machine learning problems with sequential data. 
With LSTM cells [23], RNNs can overcome the vanishing 
gradient problem when the input sequences are long. As 
mentioned above, the spoken responses in this study are roughly 
100-150 words in length. We propose a prompt-aware and 
attention-based LSTM-RNN to grade the appropriateness of 
spoken responses. Gated recurrent units (GRU) [24] can be an 
alternative to solve the vanishing gradient problem but its 
performance is inferior to LSTM in our task. Similar findings are 
reported in [19]. The proposed neural network architecture is 
illustrated in Figure 2, which consists of the following three 
components, 

Prompt encoder   It encodes the word sequence 
{𝑤#

$, 𝑤&
$,… , 𝑤(

$}	contained in the prompt into a fixed length 
vector, 𝑣$, hereafter referred to as the prompt-vector. There are 
two layers: the embedding layer and the BLSTM-RNN layer, in 
the encoder. In the embedding layer, the word 𝑤,

$ ∈
{𝑤#

$, 𝑤&
$,… , 𝑤(

$} represented by its one-hot representation is 
projected into a 𝑑/ dimensional space, 𝑒,

$,  
 

𝑒,
$ = ℋ/(𝐸𝑤,

$)                                (1) 
 
where 𝐸 is the word embedding matrix initialized by Google’s 
Word2Vec and optimized during model training. The BLSTM-
RNN has two directions: the forward time direction and the 
backward time direction. The prompt vector, 𝑣$,  is the output 
of the BLSTM-RNN layer, i.e., the concatenation of the last state 
of forward state sequence, 𝑦(

$7777⃗  , and the first state of backward 
state sequence, 𝑦#

$7⃖777, 
 

ℎ,
$ = ℋ;<=>(𝑊@A𝑒,

$ +𝑊AAℎ,C# + 𝑏A)        (2) 
 

𝑦,
$ = 𝑊AEℎ,

$ + 𝑏E                            (3) 
 

𝑣$ = {𝑦(
$7777⃗ , 𝑦#

$7⃖777}                                   (4) 
 
where 𝑊 is the weight matrices, e.g. 𝑊@A is the weight matrix 
between word embedding and hidden vectors; 𝑏 is the bias 
vectors, e.g. 𝑏A is the bias vector for hidden state vectors; and ℋ  
is the nonlinear activation function for hidden nodes.  

The number of prompts contained in the corpus mentioned 
in Section 3 might not be large enough to train a decent prompt 
decoder, so we also employ an alternative approach, i.e., to use 
the average of word embedding vectors,  

 
𝑣$ = #

(
∑ 𝑒,

$(
,G#                                    (5) 

 
as prompt-vector in this study. This prompt-vector is also the one 
used to draw Figure 1. 
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Prompt-aware LSTM-RNN     Each word 𝑤,
H ∈

{𝑤#H, 𝑤&H,… , 𝑤=
H} in the response is also mapped to word 

embedding, 𝑒,H, via the embedding layer. The prompt-vector,	𝑣$,   
is appended to the word embedding, 𝑒,H, of the response and fed 
into a LSTM-RNN layer, 

 
𝑒,H = ℋ/(𝐸𝑤,

H)                                (6)  
 

𝑥,	= {𝑒,H, 𝑣$}                                  (7)   
 

ℎ, = ℋ;<=>(𝑊@A𝑥, +𝑊AAℎ,C# + 𝑏A)        (8)                     
 
Attention mechanism     The attention mechanism can be 

simply seen as a method for making the model focus on the states 
that are of high importance. Adding an attention layer into an 
LSTM-RNN model can be applied either to the input to the 
LSTM or to the output of the LSTM, which depends on the 
information required to propagate at every time step. Generally, 
the last state, ℎ=, of the LSTM-RNN is used as the final 
prediction. To utilize the information from the contextual states, 
i.e., time steps, ℎ,,			,∈{#,&,…,=}	, we add a feed-forward attention 
[25] layer to the outputs of the LSTM. It can produce a single 
vector 𝑧 from an entire state sequence as 

 

𝛼, =
expO𝛼(ℎ,)P

∑ exp	(𝛼(ℎQ))=
QG#

																							(9) 

 
    𝑧 = 	∑ 𝛼,=

,G# ℎ,                                (10) 
 

where vectors ℎ,	 in the state sequence are fed into a learnable 
function 𝛼(ℎ,) to produce a probability vector 𝛼 . The vector 𝑧 
is computed as a weighted average of ℎ, , with weights given by 
𝛼. It is implemented as a merged layer by applying the multiply 
operation on the outputs of the LSTM layer and the outputs of 
the attention layer in Keras [26]. The mean of the merged layer 
is the predicted score for the response and the given prompt. 
 
4.3. Model Training 
 
The Adam optimization algorithm with parameters (lr=0.001, 
beta_1=0.9, beta_2=0.999, epsilon=None, amsgrad=False, 
decay=0.0) provided in [27] is used to update the network 
parameters towards minimizing the loss function of mean 
squared error (MSE) over the training set as, 
 

𝑀𝑆𝐸(𝑠, 𝑠∗) = #
>
∑ (𝑠W − 𝑠W∗)&>
WG#                 (11) 

 
where 𝑀 is the total number of spoken responses in the training 
set, 𝑠W is the reference score for i-th response and 𝑠W∗ is the 
corresponding score predicted by the model.  

We shuffle the training samples and select 20% of them as 
a development set. Instead of using early stopping methods, we 
train the model for a fixed number of epochs. We set model 
checkpoints, i.e., we save the model weights after each epoch if 
the performance of the model on the development set is 
increased, and store them in a callback list during training. We 
select the best model in terms of the best performance in the 
callback list as the final model. To avoid overfitting, we employ 

either dropout with different fraction rates of inputs or the 
regularization items, for example, L1 and L2, in this study. But 
no performance improvement is observed on the development 
set.  
 
4.4. Baseline system 
 
Our baseline system is a Support Vector Regression (SVR) 
model with the features extracted from the C-rater system, a 
content-based scoring system for written text. SVR is one of the 
most widely used models for speech or text scoring. The 
extracted features include 

o Character n-grams for n=2 to 5 
o Word unigrams and bigrams 
o Length of response in characters 
o Syntactic dependencies 
o Prompt bias 
These features (hereafter referred to as content features) are 

represented in a binary format, i.e., present or not. Syntactic 
dependencies were extracted using the Zpar dependency parser 
[28]. Prompt bias feature, i.e., a single binary vector, is used to 
represent each prompt performing like an ID in the feature space. 
This feature is inspired by the intercept features in [29] for the 
content scoring system in the SemEval 2013 shared task. The 
assumption of using this feature is that only generic (prompt-
independent) features will be active and contribute to the score 
for a response to an unseen prompt from a new domain. In 
contrast, for a response to a seen prompt, both generic and 
prompt-specific features contribute to the score with a weighting 
learned by a machine learning approach. 

 We train the SVR model using the SKLL toolkit [30]. The 
hyperparameters of the SVR were tuned using cross-validation 
on the training set and the performance evaluation metric as the 
objective function. The final model was obtained by training on 
all training samples with the optimized hyperparameters. 
 

5. EXPERIMENTS 
 
Our neural network approach to spoken response scoring is 
evaluated on the corpus described in Section 3 by comparing it 
with the baseline system described in Section 4.4. The neural 
networks are constructed using the Keras Python package [26] 
with a TensorFlow [31] backend. The performance evaluation 
metric is Pearson’s correlation between human scores and scores 
predicted by the model. To isolate the impact of erroneous ASR 
hypotheses on the performance of the proposed model, we 
evaluate it using both human transcriptions and then ASR 
hypotheses as input. 
 
5.1. Experimental Setup 
 
Our ASR system [32] is constructed using the tools in Kaldi [33]. 
The acoustic model (AM) is trained on a corpus consisting of 
over 300 hours of non-native speech recorded by 1,600 children 
and 1,700 adults worldwide. A BLSTM-RNN is used to build 
the acoustic model with the input features: 40-dim MFCC and 
100-dim i-vector. I-vectors are a useful method for speaker 
adaptation, which then improves the DNN-based ASR for non-
native speech recognition [5]. The parameters of the BLSTM-
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RNN are firstly trained by optimizing the cross-entropy function 
and then refined by sequence-discriminative training, i.e., state-
level minimum Bayes risk (sMBR). The language model (LM) 
is the combination (linear interpolation) of two LMs trained 
separately by over five million word-tokens from the 
transcriptions of a spoken language proficiency test and the 
prompts contained in the corpus. The interpolated LM is finally 
represented as a finite state transducer (FST) for weighted FST-
based decoding. The overall word error rate (WER) of the ASR 
system on the corpus is 35.4%. The WER varies widely for 
responses with different scores, i.e., the WER of the ASR on the 
responses scored with 4 is 20.1%, while the WER on the 
responses scored with 0 is 50.6%. Transcribing non-native 
children's speech is also a difficult task for human experts; the 
disagreement is approximately 15% (WER) among transcribers. 
      Responses that contain a language other than English receive 
a score of zero. Off-topic responses constitute another large 
group of responses scored with zero. Recently, Siamese 
Convolutional Neural Networks (CNN) have been used to detect 
off-topic responses in automated speech scoring systems [36]. 
Siamese CNNs are effective in learning the similarity patterns 
between the responses and the prompts.  
 
Table 3: Correlations of predicted scores with reference scores 
across the NN structures (w/) or (w/o) filtering model on the test 
set of human transcriptions 
 

NN Structures Correlations 
Attention LSTM-RNN (w/o) 0.789 
Siamese LSTM-RNN + Attention LSTM-RNN (w) 0.800 
Prompt encoder + Attention LSTM-RNN (w/o) 0.806 

 
Table 4: Correlations of predicted scores with reference scores 
across different NN structures on the test set of human 
transcriptions 
 

NN Structures Correlations 
LSTM-RNN 0.739 
     +WE trainable 0.745 
     +Attention layer 0.789 
     +Prompt encoder 0.806 

 
We build a Siamese LSTM-RNN with Manhattan distance 

[37] to first classify the responses into two categories: zero-score 
and non-zero-score, and then construct an attention-based 
LSTM-RNN model to predict scores ranging from 1 to 4 for the 
resultant non-zero-score responses. Here the Siamese LSTM-
RNN performs as a filtering model to filter the responses with 
low similarity to the prompts and assigns a zero score to these 
responses. The inputs to the Siamese LSTM-RNN are the word 
sequences contained in both prompts and responses. The number 
of words and the other features extracted from the transcriptions 
of the responses are intrinsically considered in the model 
building, owing to the strong feature learning abilities of deep 
learning-based approaches. The performance of the Siamese 
LSTM-RNN in terms of binary classification accuracy is 97.3%, 

which is significantly better than that (91.9%) of the majority 
voting classifier. Table 3 shows the performance in terms of the 
correlations of all predicted scores ranging from 0 to 4 with the 
reference scores, with or without then Siamese LSTM-RNN 
filtering model on the test set of human transcriptions. The 
performance of attention LSTM-RNN with filtering model is 
better than that without it, but it is slightly worse than that of the 
prompt-encoded model, which already considers the similarity 
between prompt and response. Therefore, we train the model to 
directly predict the scores ranging from 0 to 4 in the experiments 
hereafter. 

The architecture of the neural network is configured as 
follows: the dimension of word embedding vectors is 300; the 
vocabulary size is set to 14,000; the maximum length for spoken 
responses is around 300 words; the number of units for LSTM is 
256; a batch size of 128 samples is used in each epoch; 100 
epochs are used for model training. We also try to use stacked 
LSTM-RNNs for this task, but no significant performance 
improvement is observed even with efficient methods to avoid 
overfitting. The model training procedure and the parameter 
optimization are introduced in Section 4.3. Table 4 presents the 
results of different NN structures on the test set of human 
transcription indicating that 1) word embeddings (WE) 
initialized using pre-trained Google News and refined in the 
training of scoring model can slightly outperform fixed 
embeddings; 2) adding an attention layer after the LSTM layer 
brings a significant performance improvement; 3) An attention-
based LSTM-RNN with prompt-vectors as conditional inputs 
further improves the performance. 
 
5.2. Results and Discussion 
 
We build five scoring systems as follows: 

1) Baseline: SVR model with content features mentioned 
in Section 4.4. Prompt bias is excluded in the feature 
set. 

2) Baseline_P_I: The same as baseline but prompt bias is 
included in the feature set. 

3) Att_RNN: Attention based LSTM-RNN 
4) Att_RNN_P_A: Att_RNN with the prompt encoder of 

the average of word embeddings 
5) Att_RNN_P_B: Att_RNN with the prompt encoder 

trained by BLSTM-RNN 
 
The performances of the above five systems with the inputs 

of ASR hypotheses and human transcriptions on the test set are 
shown in Table 5. The performance is measured by the 
correlations of automatically predicted scores with the reference 
scores and shown in a breakdown of the testing responses to seen 
prompts and unseen prompts. The predicted scores produced by 
the systems are continuously valued scores while the experts rate 
the spoken responses using scoring rubrics on a discrete 5-point 
scale. Table 5 also presents the correlations between human 
scores and predicted system scores rounded to the nearest integer 
in parentheses. 

 
 
 

983



Table 5: Correlations of automatically predicted scores (rounded scores) by different scoring systems with the inputs of ASR 
hypotheses and human transcriptions, with reference scores for the responses to seen prompts and unseen prompts  
 

 Baseline Baseline_P_I Att_RNN Att_RNN_P_A Att_RNN_P_B 
Human, All 0.801 (0.769) 0.803 (0.770) 0.789 (0.758) 0.791(0.761) 0.806 (0.767) 
Human,Seen 0.813 (0.761) 0.814 (0.762) 0.804 (0.764) 0.809(0.771) 0.815 (0.773) 
Human,Unseen 0.770 (0.729) 0.773 (0.734) 0.735 (0.694) 0.765(0.731) 0.773 (0.737) 
ASR, ALL 0.767 (0.727) 0.765 (0.726) 0.782 (0.754) 0.787(0.763) 0.791 (0.769) 
ASR, Seen 0.794 (0.771) 0.791 (0.765) 0.799 (0.773) 0.801(0.774) 0.798(0.774) 
ASR, Unseen 0.731 (0.659) 0.732 (0.673) 0.701 (0.632) 0.722(0.665) 0.731(0.675) 

 

The results of the baseline systems shown in Table 5 
indicate that: 1) adding the prompt bias feature marginally 
affects the performance of the system; 2) the system 
performance achieved on responses to unseen prompts suffers 
more from erroneous ASR hypotheses than responses to seen 
prompts. We also tried adding prompt text to the content features 
used in the baseline system but so far we have not observed 
improvement over the baseline_P_I system. 

The performance of our prompt-aware NN-based approach 
is on a par with the baseline, which relies on the feature 
engineering. The prompt information encoded by the average 
word embedding (Att_RNN_P_A) and the BLSTM-RNN 
(Att_RNN_P_B) can both improve the performance of NN-
based scoring system. It is more effective on assessing unseen-
prompt responses than seen-prompt responses. 

Table 5 also indicates that the best system is Att_RNN_P_B 
with human transcriptions as inputs. The automated scores from 
that system have correlations of 0.773 and 0.737 with the 
reference scores for the responses to seen prompts and unseen 
prompts, separately. They are close to human-human agreement 
level (r = 0.820), which has no significant difference among the 
responses to different prompts. 

The spoken content-based scoring models are usually built 
prompt-specifically. We employ SVR to train prompt-specific 
models with content features, i.e., the responses to each prompt 
in the training set are used to train a model.  Thus, we obtain 16 
models and evaluate them on the corresponding responses in the 
testing set. As a comparison, the performance of generic model 
(prompt-aware NN-based model) is recalculated prompt-
specifically. The responses to two unseen prompts are excluded 
in this comparison since there are no available responses in the 
training set. Figure 3 shows the correlations of automatically 
predicted scores by conventional prompt-specific models and 
our generic NN-based model with reference scores across 
different responses to seen prompts. The performance of prompt-
specific models varies substantially, ranging from r = 0.892 to r 
= 0.661, while the range of the performance from our generic 
NN-based model is much smaller, ranging from r = 0.871 to r = 
0.736. The NN-based approach can learn commonalities 
between the training responses to different prompts so as to 
enhance the performance on the difficult responses in terms of 
predicting scores correctly. The overall performance for the 
responses to seen prompts in the test set achieved by the 
conventional prompt-specific model and the generic NN-based 
model are r = 0.821 and r = 0.815, respectively. The performance 
gap between these two modes is very small. These results are 
obtained by using human transcriptions as the inputs to the 

models, and the same phenomena are observed when we use 
ASR hypotheses as the inputs to the models. In addition, the 
performance of the prompt-specific NN-based model is worse 
than that of the generic NN-based model owing to much smaller 
number of responses per prompt used for model training in this 
study comparing with the dataset used in [17-19]. 

 

 
 

Fig.3: Correlations of automatically predicted scores by 
conventional prompt-specific models and our generic NN-based 
model with reference scores across different responses to seen 
prompts 
 

6. CONCLUSIONS 
 
In this paper, we have proposed a prompt-aware attention 
LSTM-RNN for scoring non-native spoken responses. Our 
model can automatically represent high-level abstractions in the 
ASR hypotheses of spoken responses and use that representation 
to predict their scores in terms of the appropriateness of their 
content. An attention mechanism applied to the output of an 
LSTM looks over all the information of the states and can 
dramatically improve the performance of the LSTM-RNN. Our 
model also can learn the relations between prompts and 
responses via prompt-vector-conditioned word embeddings and 
thus further enhances the performance of the automated scoring 
system. In the future, we will test our approach on a larger data 
set (since deep learning with big data is capable of significantly 
outperforming conventional approaches) and we will explore 
more sophisticated neural network architectures to improve the 
performance.   
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